RAS Earth ScienceИзвестия Русского географического общества Bulletin of the Russian Geographical Society

  • ISSN (Print) 0869-6071
  • ISSN (Online) 3034-5383

Socio-Ecological Aspects in Geoecological Assessment of Nonmetal Construction Materials Mining in the Oka Riverbed

PII
10.31857/S0869607123020027-1
DOI
10.31857/S0869607123020027
Publication type
Status
Published
Authors
Volume/ Edition
Volume 155 / Issue number 2
Pages
57-72
Abstract
Abstract —The evaluation of socio-ecological risks of the mining of sand-gravel mixture (SGM) from the riverbed is an important applied aspect of geo-ecological analysis. The article provides an overview of international scientific publications on this issue. The authors bring to light the most discussed, hence, the most relevant socio-ecological problems related to the extraction of SGM: a growing demand and shortage of these materials, deteriorating living conditions in areas adjacent to mining sites, deteriorating road conditions, water supply problems, increasing limitations to recreational land use, labor market distortions, rising crime, etc. The authors demonstrate that optimal management decision-making requires both an investigation of sand-gravel mining conditions and standards, and a socio-ecological assessment of the area, including the population’s environmental awareness regarding this problem; and illustrate this notion with the results of a study (semi-structured interviews in the form of a case study, combined with a quantitative pilot study) on population’s environmental concerns that has been conducted in several cities on the Oka River in the Moscow Region. The study suggests that the population’s awareness regarding the environmental issues of non-metal mineral resources extraction could be described as ranging from moderate to insufficient. The most active part of the population has an understanding of how SGM extraction affects the riverbed. However, the population’s overall appreciation of the importance of water resources for the existence of the region is rather low. The environmental concern levels could be described as moderately wary: there is subjective preoccupation with the issue of deterioration of the ecological state of the river, but there also is an understanding of the economic importance of SGM mining. Based on the conducted study, the authors provide specific recommendations as to how it could be increase the environmental awareness regarding the topic at hand. In addition, the authors stress the environmental importance of observing the regulations regarding the SGM, explain the benefits of informational support of the population and organization of educational events, and suggest conducting regular monitoring of the socio-ecological state of the region. The proposed method for identifying the levels of environmental concern of the population is believed to allow for a reduction of potential social tensions within the region.
Keywords
аллювиальные пески и гравий экологическая озабоченность геоэкологический анализ социально-экологические последствия добычи
Date of publication
01.03.2023
Year of publication
2023
Number of purchasers
0
Views
44

References

  1. 1. Барышников Н.Б., Субботина Е.С. Гидрологические риски при разработке русловых карьеров на реках России // Ученые записки Российского государственного гидрометеорологического университета. № 21. 2011. С. 5–10.
  2. 2. Беркович К.М. Современная трансформация продольного профиля верхней Оки // Геоморфология и палеогеография. 1993. № 3. С. 43–49.
  3. 3. Беркович К.М., Злотина Л.В., Турыкин Л.А. Русловые процессы и использование природных ресурсов реки (на примере Оки) // География и природные ресурсы. 2015. № 1. С. 98–104.
  4. 4. Беркович К.М. Русла рек и деятельность человека. М.: Принтков. 2020. 146 с.
  5. 5. Гладков Г.Л. Обеспечение устойчивости русел судоходных рек при дноуглублении и разработке русловых карьеров. Автореферат дисс. доктора тех. наук, СПб ун-т водн. коммун. СПб.: 1996. 33 с.
  6. 6. Горшков М.К., Шереги Ф.Э. Прикладная социология: методология и методы. М.: ФГАНУ, “Центр социологических исследований”, ИС РАН. 2012. 404 с.
  7. 7. Карасев И.Ф. Русловые процессы при переброске стока. Л.: Гидрометеоиздат, 1975. 288 с.
  8. 8. Масалков И.К., Семина М.В. Стратегия кейс стади. Методология исследования и преподавания. М.: Академический Проект; Альма Матер, 2011. 443 с.
  9. 9. Наумов Г.Г. Антропогенные воздействия на русловые процессы на переходах через водотоки. М.: МАДИ. 2012. 105 с.
  10. 10. Снищенко Б.Ф., Месерлянс Г.Г. Развитие руслового процесса на участках выемок речного аллювия // Динамика русловых потоков. Л.: ЛПИ. 1987. 342 с.
  11. 11. Тойн П., Ньюби П. Методы географических исследований. 1. Вып. Экономическая география. М.: Изд-во “Прогресс”. 1977. 275 с.
  12. 12. Турыкин Л.А. и др. Определение экологически допустимых параметров русловой добычи общераспространенных полезных ископаемых в русле р. Оки // Тридцать пятое пленарное межвузовское координационное совещание по проблеме эрозионных, русловых и устьевых процессов: Доклады и краткие сообщения. Курск: Деловая полиграфия. 2020. С. 33–39.
  13. 13. Ядов В.А. Стратегия социологического исследования. Описание, объяснение, понимание социальной реальности. 3-е изд., испр. М.: Омега-Л, 2007. 567 с.
  14. 14. Яницкий О.Н. Экологическая культура: очерки взаимодействия науки и практики. М.: Наука, 2007. 271 с.
  15. 15. Alcamo J. et al. Ecosystems and Human Well-Being: a Framework for Assessment. Island Press, 2003. 266 p.
  16. 16. Ayuk E. et al. Mineral Resource Governance in the 21st Century: Gearing Extractive Industries towards Sustainable Development. International Resource Panel, United Nations Envio, Nairobi, Kenya, 2020. 374 p.
  17. 17. Bendixen M. et al. Sand, Gravel, And UN Sustainable Development Goals: Conflicts, Synergies, and Pathways Forward // One Earth. 2021. V. 4. № 8. P. 1095–1111.
  18. 18. Bisht A., Gerber J.F. Ecological Distribution Conflicts (EDCs) over Mineral Extraction in India: An overview // The Extractive Industries and Society. 2017. V. 4. № 3. P. 548–563.
  19. 19. Churkina G. et al. Buildings as a Global Carbon Sink // Nature Sustainability. 2020. V. 3. № 4. P. 269–276.
  20. 20. Cruz S.M., Manata B. Measurement of Environmental Concern: A Review and Analysis // Frontiers in Psychology. 2020. V. 11. 363 p.
  21. 21. Dunlap R.E., Jones R.E. Environmental Concern: Conceptual and measurement Issues // Handbook Of Environmental Sociology. 2002. V. 3. № 6. P. 482–524.
  22. 22. Ester P. Environmental Concern in the Netherlands // Progress in Resource Management and Environmental Planning. 1981. P. 81–108.
  23. 23. Ester P., Van der Meer F. Determinants of Individual Environmental Behaviour. an Outline of a Behavioural Model and some Research Findings // Netherlands (The) Journal of Sociology anc Sociologia Neerlandica Amsterdam. 1982. V. 18. № 1. P. 57–94.
  24. 24. Franks D.M. Reclaiming the Neglected Minerals of Development // The Extractive Industries and Society. 2020. V. 7. № 2. P. 453–460.
  25. 25. Harriss-White B., Michelutti L. (ed.). The Wild East: Criminal Political Economies in South Asia. UCL Press, 2019. 367 p.
  26. 26. Kondolf G.M. Geomorphic and Environmental Effects of Instream Gravel Mining // Landscape and Urban Planning. 1994. V. 28. № 2–3. P. 225–243.
  27. 27. Krausmann F. et al. Growth in Global Materials Use, GDP and Population During the 20th Century // Ecological Economics. 2009. V. 68. № 10. P. 2696–2705.
  28. 28. Mahadevan P. Sand mafias in India // Disorganized Crime in a Growing Economy. 2019. P. 1–27.
  29. 29. Miatto A. et al. Global Patterns and Trends for Non-Metallic Minerals Used for Construction // Journal of Industrial Ecology. 2017. V. 21. № 4. P. 924–937.
  30. 30. Millennium Ecosystem Assessment (MEA) Ecosystems and Human Well-Being: Wetlands and Water. World Resources Institute, 2005. 81 p.
  31. 31. Padmalal D., Maya K. Sand Mining: Environmental Impacts and Selected Case Studies. Springer, 2014. 177 p.
  32. 32. Parker D. Environmental Assessment and Auditing of Mining Operations – An International Perspective // Proceedings of the IBC UK Conferences on the Environmental Management of Mining Operations, London. 1996.
  33. 33. Peduzzi P. Sand, rarer than one thinks, Environ. Dev., 11, 2014. P. 208–218.
  34. 34. Sverdrup H.U., Koca D., Schlyter P. A simple system dynamics model for the global production rate of sand, gravel, crushed rock and stone, market prices and long-term supply embedded into the WORLD6 model // BioPhysical Economics and Resource Quality. 2017. l. 2. P. 1–20.
  35. 35. Torres A. et al. A looming tragedy of the sand commons // Science. 2017. V. 357. № 6355. P. 970–971.
  36. 36. Wiejaczka Ł. et al. Socioenvironmental issues of river bed material extraction in the Himalayan piedmont (India) // Environmental earth sciences. 2018. V. 77. P. 1–9.
  37. 37. Willis K.G., Garrod G.D. Externalities from extraction of aggregates: regulation by tax or land-use controls // Resources Policy. 1999. V. 25. № 2. P. 77–86.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library