ОНЗ Известия Русского географического общества Bulletin of the Russian Geographical Society

  • ISSN (Print) 0869-6071
  • ISSN (Online) 3034-5383

Развитие зимнего фитопланктона Онежского озера в зависимости от физико-химических условий среды

Код статьи
10.31857/S0869607124040084-1
DOI
10.31857/S0869607124040084
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 156 / Номер выпуска 4
Страницы
358-374
Аннотация
Статья посвящена изучению развития зимнего фитопланктона Онежского озера в зависимости от температурных и световых условий, цветности воды, содержания органических и биогенных веществ. В апреле 2022 и 2023 гг., незадолго до вскрытия льда, в Онежском озере выявлены чрезвычайно низкие показатели развития микроводорослей. Основным представителем являлся холодолюбивый вид Aulacoseira islandica, относящийся к отделу диатомовых водорослей. Общие численность, биомасса фитопланктона и концентрация хлорофилла а варьировали в пределах 0.13–0.71 млн кл/л, 0.06–0.44 мг/л и 0.3–0.8 мкг/л соответственно и характеризовали Петрозаводскую губу и центральную глубоководную часть Онежского озера в зимний период как низкопродуктивные. Причиной небольших показателей развития микроводорослей в зимний период в Петрозаводской губе является высокая цветность воды, определившая малую глубину фотической зоны, и глубокое конвективное перемешивание водной толщи. В центральной части Онежского озера к лимитирующим факторам развития зимнего фитопланктона относятся неблагоприятные световые условия в связи с большой глубиной конвективного перемешанного слоя.
Ключевые слова
Онежское озеро зимний период метеорологические условия температура воды конвекция фотическая зона органическое вещество биогенные элементы фитопланктон хлорофилл а
Дата публикации
26.12.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
44

Библиография

  1. 1. Вислянская И. Г. Структура и динамика биомассы фитопланктона / Онежское озеро. Экологические проблемы. Петрозаводск: Карельский научный центр РАН, 1999. С. 146–158.
  2. 2. Диагноз и прогноз термогидродинамики и экосистем великих озер России / Под ред. Н. Н. Филатова. Петрозаводск: Карельский научный центр РАН. 2020. 260 с.
  3. 3. Здоровеннова Г. Э., Здоровеннов Р. Э., Пальшин Н. И., Ефремова Т. В. Сезонная и межгодовая изменчивость температуры воды в Петрозаводской губе Онежского озера. Известия Русского географического общества. 2023. Т. 155, вып. 3–4. С. 47–61. https://doi.org/10.31857/S0869607123030126
  4. 4. Калинкина Н. М., Теканова Е. В., Ефремова Т. В., Пальшин Н. И., Назарова Л. Е., Баклагин В. Н., Здоровеннов Р. Э., Смирнова В. С. Реакция экосистемы Онежского озера в весенне-летний период на аномально высокую температуру воздуха зимы 2019/2020 годов // Известия РАН. Серия географическая. 2021. Т. 85. № 6. С. 888–899. https://doi.org/10.31857/S2587556621060078
  5. 5. Китаев С. П. Основы гидробиологии для гидробиологов и ихтиологов. Петрозаводск: Карельский научный центр РАН, 2007. 395 с.
  6. 6. Кузнецов С. И., Дубинина Г. А. Методы изучения водных микроорганизмов. М.: Наука, 1989. 288 с.
  7. 7. Лозовик П. А. Геохимическая классификация поверхностных вод гумидной зоны на основе их кислотно-основного равновесия // Водные ресурсы. 2013. Т. 40. № . 6. С. 583–592. https://doi.org/10.7868/S0321059613060072
  8. 8. Назарова Л. Е., Исакова К. В., Калинкина Н. М., Балаганский А. Ф. Влияние потепления климата на зимний сток реки Шуя и последствия для зообентоса Онежского озера // Известия Русского географического общества. 2022. Т. 154, вып. 1. С. 28–36. https://doi.org/10.31857/S0869607122010086
  9. 9. Петрова Н. А. Фитопланктон Онежского озера / Растительный мир Онежского озера. Под ред. И. М. Распопова. Л.: Наука, 1971. С. 88–130.
  10. 10. Федеральная служба РФ по гидрометеорологии и мониторингу окружающей среды. Сайт. Всероссийский научно-исследовательский институт гидрометеорологической информации — мировой центр данных. URL: http://meteo.ru/data (дата обращения: 15.05.2024)
  11. 11. Федоров В. Д. О методах изучения фитопланктона и его активности. М.: Изд-во МГУ, 1979. 167 с.
  12. 12. Bouffard D., Zdorovennov R. E., Zdorovennova G. E., Pasche N., Wüest A., Terzhevik A. Y. Ice-covered Lake Onega: effects of radiation on convection and internal waves // Hydrobiologia. 2016. Vol. 780. Р. 21–36. https://doi.org/10.1007/s10750-016-2915-3
  13. 13. Galakhina N., Zobkov M., Zobkova M. Current chemistry of Lake Onego and its spatial and temporal changes for the last three decades with special reference to nutrient concentrations // Environmental Nanotechnology, Monitoring & Management. 2022. Vol. 17. https://doi.org/10.1016/j.enmm.2021.100619
  14. 14. Hampton S. E., Galloway A. W. E., Powers S. M., Ozersky T., Woo K. H., Batt R. D. et al. Ecology under lake ice // Ecology Letters. 2017. Vol. 20. № 1. P. 98–111. https://doi.org/10.1111/ele.12699
  15. 15. Kalinkina N., Tekanova E., Korosov A., Zobkov M., Ryzhakov A. What is the extent of water brownification in Lake Onego, Russia? // Journal of Great Lakes Research. 2020. Vol. 46. P. 850–861. https://doi.org/10.1016/j.jglr.2020.02.008
  16. 16. Ozersky T., Bramburger A. J., Elgin A. K., Vanderploeg H. A., Wang J., Austin J. A. et al. The changing face of winter: Lessons and questions from the Laurentian Great Lakes // Journal of Geophysical Research: Biogeosciences. 2021. Vol. 126. № 6. https://doi.org/10.1029/2021JG006247
  17. 17. Savchuk O. P., Isaev A. V., Filatov N. N. Three-dimensional hindcast of nitrogen and phosphorus biogeochemical dynamics in Lake Onego ecosystem, 1985–2015. Part II. Seasonal dynamics and spatial features; integral fluxes // Fundamental and Applied Hydrophysics. 2022. Vol. 15. № 2. P. 98–109. https://doi.org/10.48612/fpg/9mg5-run6-4zr8
  18. 18. Determination of photosynthetic pigments in sea waters. Report of SCOR/UNESCO Working Group 17. Paris, France, UNESCO. 1966. 69 p. https://doi.org/10.25607/OBP-1940
  19. 19. Sharma S., Blagrave K., Magnuson J. J., O’Reilly C. M., Oliver S., Batt R. D. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world // Nature Climate Change. 2019. Vol. 9. P. 227–231. www.nature.com/natureclimatechange
  20. 20. Suarez E. L., Tiffay M. -C., Kalinkina N., Tchekryzheva T., Sharov A., Tekanova E. et al. Diurnal variation in the convection-driven vertical distribution of phytoplankton under ice and after ice-off in large Lake Onego (Russia) // Inland Waters. 2019. Vol. 9. № 2. P. 193–204. https://doi.org/10.1080/20442041.2018.1559582
  21. 21. Tikkanen T. Kasviplanktonopas. 1986. Helsinki: Suomen Luonnonsuojelun Tuki Oy.
  22. 22. Weyhenmeyer G. A., Obertegger U., Rudebeck H., Jakobsson E., Jansen J., Zdorovennova G. et al. Towards critical white ice conditions in lakes under global warming // Nature communications. 2022. Vol. 13. № 4974. https://doi.org/10.1038/s41467-022-32633-1
  23. 23. Zobkov M. Zobkova M., Galakhina N., Efremova T., Efremenko N., Kulik N. Data on the chemical composition of Lake Onego water in 2019‒2021 // Data in Brief. 2022. Vol. 42. https://doi.org/10.1016/j.dib.2022.108079
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека