RAS Earth ScienceИзвестия Русского географического общества Bulletin of the Russian Geographical Society

  • ISSN (Print) 0869-6071
  • ISSN (Online) 3034-5383

Seasonal and Inter-Annual Variability of Water Temperature in Petrozavodsk Bay of Lake Onega

PII
10.31857/S0869607123030126-1
DOI
10.31857/S0869607123030126
Publication type
Status
Published
Authors
Volume/ Edition
Volume 155 / Issue number 3-4
Pages
47-61
Abstract
Abstract— Based on year-round measurements of water temperature at an autonomous station (an anchored chain equipped with temperature sensors), the features of the temperature and ice regimes of the Petrozavodsk Bay of Onega Lake in modern climatic conditions were studied; the dates and duration of the main hydrological phenomena in the water area of the bay were specified. In the abnormally warm winter of 2019–2020, the water area of the Petrozavodsk Bay was not completely covered with ice for the first time in a long period of observations; in the area of the measurement station, ice fields were observed from late January to mid-March. The duration of ice-covered period in the next two winters was 3.5 and 5 months. Data were obtained on the timing of the onset and duration of the spring under-ice convection, a phenomenon that plays an important role in the thermal regime of the lake at the end of winter. It is shown that 2016, 2021 and 2022 spring under-ice convective mixing lasted 4–6.5 weeks, covering the entire water column by the end of ice period. Mixing of the water column after breaking the ice (spring homothermy) continued for another 3–4 weeks. In the spring of 2020, under-ice convection was not observed; spring overturn continued for two months from mid-March to mid-May. The dates of the upward transition of water temperature through 4°C in the years of measurements (5–19 May) were ahead of the long-term average by 2–3 weeks (end of May). Thermal stratification was established from 12 to 27 May and existed for 3–3.5 months. Complete mixing of the water mass of the bay took place in late August–early September, and then, until ice settling, the water column cooled in a state of homothermy. Immediately before ice formation, the water temperature dropped to very low values and did not exceed 0.1°С in the water column. The period with an average daily water temperature of the surface layer of the Petrozavodsk Bay above 10°C lasted from 121 to 144 days during the years of measurements.
Keywords
озеро подледная конвекция стратификация термический режим ледовый режим климатическая изменчивость температурная коса
Date of publication
01.12.2023
Year of publication
2023
Number of purchasers
0
Views
23

References

  1. 1. Ефремова Т.В., Пальшин Н.И., Белашев Б.З. Температура воды разнотипных озер Карелии в условиях изменения климата (по данным инструментальных измерений 1953–2011 гг.) // Водные ресурсы. 2016. Т. 43. № 2. С. 228–238.
  2. 2. Здоровеннова Г.Э., Гавриленко Г.Г., Здоровеннов Р.Э. и др. Эволюция температуры водной толщи бореальных озер на фоне изменений регионального климата // Известия РГО. 2017. Т. 149. Вып. 6. С. 59–74.
  3. 3. Здоровеннова Г.Э., Голосов С.Д., Пальшин Н.И. и др. Зимний термический и ледовый режимы малых озер Карелии на фоне региональной климатической изменчивости // Вестник Санкт-Петербургского университета. Науки о Земле. 2022. Т. 67. № 1. С. 138–155. https://doi.org/10.21638/spbu07.2022.108
  4. 4. Калинкина Н.М., Теканова Е.В., Ефремова Т.В. и др. Реакция экосистемы Онежского озера в весеннее-летний период на аномально высокую температуру воздуха зимы 2019–2020 годов // Известия РАН. Серия географическая. 2021. Т. 85. № 6. С. 888–899. https://doi.org/10.31857/S2587556621060078
  5. 5. Крупнейшие озера-водохранилища Северо-Запада Европейской территории России: современное состояние и изменения экосистем при климатических и антропогенных воздействиях. Петрозаводск КарНЦ РАН, 2015. 375 с.
  6. 6. Назарова Л.Е. Климатические условия на территории Карелии // Современные исследования водоемов Севера. Учебное пособие. Петрозаводск: КарНЦ РАН, 2021. С. 7–16.
  7. 7. Пальшин Н.И., Здоровеннова Г.Э., Здоровеннов Р.Э. и др. Влияние весенней подледной освещенности и конвективного перемешивания на распределение хлорофилла “а” в малом мезотрофном озере // Водные ресурсы. 2019. Т. 46. № 3. С. 259–269. https://doi.org/10.31857/S0321-0596463259-269
  8. 8. Расписание погоды. Сайт. Rp5.ru URL: https://rp5.ru/. Дата обращения 15 февраля 2023 г.
  9. 9. Резников А.И., Исаченко Г.А. Изменение климатических характеристик западной части тайги Европейской России в конце ХХ–начале ХХI вв. // Известия РГО. 2021. Т. 153. Вып. 1. С. 3–18. https://doi.org/10.31857/S0869607121010055
  10. 10. Тихомиров А.И. Термика крупных озер. Л.: Наука, 1982. 232 с.
  11. 11. Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации. Росгидромет. СПб: Наукоемкие технологии. 2022. 676 с.
  12. 12. Bouffard D., Zdorovennova G., Bogdanov S. et al. Under-ice convection dynamics in a boreal lake // Inland Waters. 2019. V. 9. № 2. P. 142–161. https://doi.org/10.1080/20442041.2018.1533356
  13. 13. Desgué-Itier O., Melo Vieira Soares L., Anneville O. et al. Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes // Hydrol. Earth Syst. Sci. 2023. V. 27. P. 837–859. https://doi.org/10.5194/hess-27-837-2023
  14. 14. Engelhardt C., Kirillin G. Criteria for the onset and breakup of summer lake stratification based on routine temperature measurements // Fundam. Appl. Limnol. 2014. V. 184 (3). P. 183–194. https://doi.org/10.1127/1863-9135/2014/0582
  15. 15. Jane S.F., Hansen G.J.A., Kraemer B.M. et al. Widespread deoxygenation of temperate lakes // Nature. 2021. V. 594. P. 66–70. https://doi.org/10.1038/s41586-021-03550-y
  16. 16. Multimaps. Caйт. URL: https://multimaps.ru. Date of access 15 February 2023
  17. 17. O’Reilly C.M. et al. Rapid and highly variable warming of lake surface waters around the globe // Geophys. Res. Lett. 2015. 42. 24. 10773–10781. https://doi.org/10.1002/2015GL066235
  18. 18. Sharma S., Blagrave K., Magnuson J.J. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world // Nat. Clim. Chang. 2019. V. 9. № 3. P. 227–231. https://doi.org/10.1038/s41558-018-0393-5
  19. 19. Suarez E., Tiffay M.-C., Kalinkina N. et al. Diurnal variation in the convection-driven vertical distribution of phytoplankton under ice and after ice-off in large Lake Onego (Russia) // Inland Waters. 2019. V. 9. № 2. P. 193–204. https://doi.org/10.1080/20442041.2018.1559582
  20. 20. Winder M., Schindler D.E. Climate Change Uncouples Trophic Interactions in an Aquatic Ecosystem // Ecology. 2004. V. 85. № 8. P. 2100–2106. https://doi.org/10.1890/04-0151
  21. 21. Wüest A., Pasche N., Ibelings B. et al. Life under ice in Lake Onego (Russia) – an interdisciplinary winter limnology study // Inland Waters. 2019. V. 9. № 2. P. 125–129. https://doi.org/10.1080/20442041.2019.1634450
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library