- PII
- S3034538325010067-1
- DOI
- 10.7868/S3034538325010067
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 157 / Issue number 1
- Pages
- 79-98
- Abstract
- Since 2019, several new global-coverage DEMs (Copernicus GLO-30, NASADEM, FABDEM) have become publicly available on the Internet. They could be used to obtain morphometric indicators and assess model soil erosion losses, including within the European Territory of Russia (ETR), where the main arable lands of the Russian Federation are located. To date, a number of studies have been carried out to assess the altitude accuracy of these models. However, in addition to absolute altitude errors, it is necessary to assess the accuracy of the of morphometric indicators calculated on the basis of these models. The article presents the results of the analysis of errors of such morphometric indicators as slope steepness, slope length, and relief erosion potential of three new global digital elevation models using the example of three sites located in the Voronezh, Saratov and Orenburg regions. The analysis of errors was performed by comparing with data calculated on the basis of DEMs constructed from large-scale topographic maps. It was found that the smallest errors in the estimated slope are demonstrated by the FABDEM model. In calculating slope lengths, none of the new models show a result that is superior in quality to what can be obtained using older DTMs (SRTM, etc.). However, for the LS-factor, the smallest errors are obtained when using the FABDEM model. The results obtained are valid both for the entire territory of each site in general and for arable lands in particular. The minimum values of errors in the LS-factor when using the FABDEM model lead to minimization of errors in calculating erosion losses of soil.
- Keywords
- NASADEM Copernicus GLO-30 FABDEM Европейская территория России эрозионный потенциал рельефа
- Date of publication
- 03.03.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 63
References
- 1. Ашаткин И. А., Мальцев К. А., Гайнутдинова Г. Ф., Усманов Б. М., Гафуров А. М., Ганиева А. Ф., Мальцева Т. С., Гиззатуллина Э. Р. Анализ морфометрии рельефа по глобальным ЦМР в пределах южной части Европейской территории России. // Учен. зап. Казан. ун-та. Сер. Естеств. науки, 2020. Т. 162. вып. 4. С. 612–628. https://doi.org/10.26907/2542-064X.2020.4.612-628
- 2. Иванов М. А., Прищепов А. В., Голосов В. Н., Залялиев Р. Р., Ефимов К. В., Кондратьева А. А., Киняшова А. Д., Ионова Ю. К. Методика картографирования динамики пахотных угодий в бассейнах рек Европейской территории России за период 1985–2015 // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 5. С. 161–171.
- 3. Инструкция по фотограмметрическим работам при создании цифровых топографических карт и планов. — М.: ЦНИИГАиК, 2002. — 48 c.
- 4. Кузнецова, А. С., Пушкарев, А. А., Краснощеков, К. В. 2023. Применение FABDEM и других современных цифровых моделей рельефа в системе аграрного мониторинга // Информационные и математические технологии в науке и управлении. 2023. Вып. 4. С. 139–147. https://doi.org/10.25729/ESI.2023.32.4.012
- 5. Литвин Л. Ф. География эрозии почв сельскохозяйственных земель России. — М.: Академкн., 2002. — 255 c.
- 6. Мальцев К. А., Ермолаев О. П. Использование цифровых моделей рельефа для автоматизированного построения границ водосборов // Геоморфология. — 2014. — № 1. — С. 45–52.
- 7. Мальцев К. А., Голосов В. Н., Гафуров А. М. Цифровые модели рельефа и их использование в расчетах темпов смыва почв на пахотных землях // Ученые записки казанского университета. Серия естественные науки. 2018, Т. 160, вып. 3 С. 514–530.
- 8. Оньков И. В., Онянова Т. Я., Шиляева О. Ю. Исследование точности радарных ЦМР, построенных по снимкам ALOS PALSAR и модели SRTM, в зависимости от вида отражающей поверхности // Геоматика. 2012. Вып 4. С. 33–36.
- 9. Толкачева В. Ф., Гарцман Б. И. Моделирование речной сети на основе цифровой модели рельефа (на примере Черноморского побережья Кавказа) // Пятые Виноградовские чтения. Гидрология в эпоху перемен : сборник докладов Международной научной конференции памяти выдающегося русского ученого Юрия Борисовича Виноградова. Санкт-Петербург: Издательство ВВМ, 2023 С. 604–609.
- 10. Флоринский И. В. Геоморфометрия сегодня. ИнтерКарто, ИнтерГИС. 2021. Т. 27, вып. 2. С. 394–447.
- 11. Эрозионно-русловые системы: монография / под науч. ред. Р. С. Чалова, А. Ю. Сидорчука, В. Н. Голосова. М. : ИНФРА-М, 2017. 698 с
- 12. ALOS Global Digital Surface Model “ALOS World 3D — 30m (AW3D30)” Japan. [2018]. URL: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30e.htm (дата обращения 01.06 2020)
- 13. ASTER Global Digital Elevation Model Version 2 — summary of validation results, [2011]. URL: https://pubs.usgs.gov/publication/70005960 (дата обращения 01.06 2020)
- 14. Barnes R. Parallel PriorityFlood depression filling for trillion cell digital elevation models on desktops or clusters // Computers & Geosciences. — 2016. — Vol. 96. — P. 56–68.
- 15. Borrelli P., Alewell C., Alvarez P. et al. Soil erosion modelling: A global review and statistical analysis // Sci. Total Environ. 2021. N 780. 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
- 16. Buckley S. M., Agram P. S., Belz J. E., Crippen R. E., Gurrola E. M., Hensley S., Kobrick M. NASADEM:User Guide. Pasadena, California, 2020. 52 p.
- 17. Carrera-Hernández J. J. Not all DEMs are equal: An evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico // Remote Sens. Environ. 2021. N 261. 112474. https://doi.org/https://doi.org/10.1016/j.rse.2021.112474
- 18. del Rosario González-Moradas M., Viveen W., Andrés Vidal-Villalobos R., Carlos Villegas-Lanza J. A performance comparison of SRTM v. 3.0, AW3D30, ASTER GDEM3, Copernicus and TanDEM-X for tectonogeomorphic analysis in the South American Andes // CATENA. 2023. № 228. 107160. https://doi.org/10.1016/j.catena.2023.107160
- 19. Desmet P. J. J., Govers G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units // Journal of Soil and Water Conservation. 1996. № 51. P. 427–433.
- 20. Emmendorfer I. B., de Almeida L. P. M., Alves D. C. L., Emmendorfer L. R., Arigony-Neto J. Accuracy assessment of global DEMs for the mapping of coastal flooding on a low-lying sandy environment: Cassino Beach, Brazil // Reg. Stud. Mar. Sci. 2024. N 74. 103535. https://doi.org/10.1016/j.rsma.2024.103535
- 21. Farr T. G., Rosen P. A., Caro E. et al. 2007. The Shuttle Radar Topography Mission // Rev. Geophys. 2007. N 45. https://doi.org/10.1029/2005RG000183
- 22. Ghannadi A., Alebooye S., Izadi M. Vertical accuracy assessment of copernicus DEM (case study: Tehran and Jam cities) // ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023. N X-4/W1-202. P. 209–214. https://doi.org/10.5194/isprs-annals-X-4-W1-2022-209-2023
- 23. Hawker L., Uhe P., Paulo L., Sosa J., Savage J., Sampson C., Neal J. A 30m global map of elevation with forests and buildings removed // Environ. Res. Lett. 2022. № 2, vol. 17. 024016. https://doi.org/10.1088/1748-9326/ac4d4f
- 24. Hutchinson M. A new procedure for gridding elevation and stream of data with automatic removal of spurious pits // J. Hydrol. 1989. N 106. P. 211–232. https://doi.org/10.1016/0022-1694 (89)90073-5
- 25. Hutchinson M. F. et al. Recent progress in the ANUDEM elevation gridding procedure //Geomorphometry. — 2011. — Т. 2011. — С. 19–22.
- 26. Krdžalić D., Ćatić J., Vrce E., Omićević D. Evaluating the accuracy of the digital elevation models (DEMs) within the territory of Bosnia and Herzegovina // Remote Sens. Appl. Soc. Environ. 2024. N 34. 101187. https://doi.org/10.1016/j.rsase.2024.101187
- 27. Lindsay J. B. Efficient hybrid breachingfilling sink removal methods for flow path enforcement in digitalelevation models // Hydrological Processes. — 2016a. — Vol. 30, no. 6. — P. 846–857.
- 28. Lopez-Vazquez C., Ariza-López F. Global Digital Elevation Model Comparison Criteria: An Evident Need to Consider Their Application // ISPRS Int. J. Geo-Information. 2023. N 12, 337. https://doi.org/10.3390/ijgi12080337
- 29. Martz L. W., Garbrecht J. An outlet breaching algorithm for the treatment of closed depressions in a raster DEM // Computers & Geosciences. — 1999. — Vol. 25, no. 7. — P. 835–844.
- 30. Maune David F. ed. 2007. Digital Elevation Model Technologies and Applications: The DEM Users Manual. 2nd ed. Bethesda, Md: American Society for Photogrammetry and Remote Sensing.
- 31. Meadows M., Jones S., Reinke K. Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in flood-prone environments // Int. J. Digit. Earth 2024. N 17. 2308734. https://doi.org/10.1080/17538947.2024.2308734
- 32. Mitasova H., Hofierka J., Zlocha M., Iverson L. R. Modeling topographic potential for erosion and depositing using GIS // Int. J. Geogr. Inf. Syst. 1996. N 10. P. 629–641. https://doi.org/10.1080/0269379960890210
- 33. Nandam V., Patel P. L. A framework to assess suitability of global digital elevation models for hydrodynamic modelling in data scarce regions // J. Hydrol. 2024. № 630. 130654. https://doi.org/10.1016/j.jhydrol.2024.130654
- 34. USGS EROS Archive — Products Overview URL: https://lta.cr.usgs.gov (дата обращения 01.06.2020)
- 35. Pipaud I., Loibl D., Lehmkuhl F. Evaluation of TanDEM-X elevation data for geomor- phological mapping and interpretation in high mountain environments — A case study from SE Tibet, China // Geomorphology. 2015. N 246. P. 232–254.
- 36. Planchon O., Darboux F. A fast, simple and versatile algorithm to fill the depressions of digital elevationmodels // Catena. — 2001. — Vol. 46. — P. 159–176.
- 37. Renard K. G., Foster G. R. Weesies G. A., McCool D. K., Yoder D. C. Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Resived Universal Soil Loss Equation (RUSLE). Washington: U.S. Government Printing Office, 1997. 384 p. https://doi.org/DC0-16-048938-5-65-100
- 38. Soille P. Morphological carving // Pattern Recognition Letters. — 2004. — Vol. 25, no. 5. — P. 543–550.
- 39. Tarboton D. G., Bras R. L., Rodriguez-Iturbe I. On the extraction of channel networks from digital elevation data // Hydrol. Process. 1991.N 5. P. 81–100. https://doi.org/10.1002/hyp.3360050107
- 40. Tran T. N. D., Nguyen B. Q., Vo N. D., Le M. H., Nguyen, Q. D., Lakshmi V., Bolten J. D. Quantification of global Digital Elevation Model (DEM) — A case study of the newly released NASADEM for a river basin in Central Vietnam // J. Hydrol. Reg. Stud. 2023. N 45. 101282. https://doi.org/10.1016/j.ejrh.2022.101282
- 41. Van Rompaey A. J. J., Verstraeten G., Van Oost K., Govers G., Poesen J. Modelling mean annual sediment yield using a distributed approach // Earth Surf. Process. Landforms. 2001. N 26. P. 1221–1236. https://doi.org/10.1002/esp.275
- 42. Wischmeier W. H., Smith D. D. Predicting rainfall erosion losses: A guide to conservation planning. Washington: U.S. Government Printing Office, 1978. 67 p.